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a b s t r a c t

Influence of temperature on the elastic properties of Mg2X (X = Si, Ge, Sn, and Pb) compounds, has been
studied using first-principles calculations, within the generalized gradient approximation, and compared
with the available experimental data in the literature. Elastic stiffness coefficients calculated with respect
to volume (cij(V)) have been correlated to the equilibrium volume as a function of temperature V(T)
from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). A good
agreement between the thus predicted elastic constants and experimental data has been achieved. The
etals and alloys
lasticity
omputer simulations

general trend in the bulk modulus (B), shear modulus (G) and Young’s modulus (E) seen for the compounds
is Mg2Ge > Mg2Si > Mg2Sn > Mg2Pb. Elastic anisotropy, fracture toughness and stiffness of the compounds
have been analyzed as a function of temperature based on their anisotropic ratio (2c44/(c11–c12)), product
of bulk modulus and volume (B × V1/3), and Young’s modulus. The results obtained herein provide a
better understanding of the elastic behavior of antifluorite compounds as a function of temperature.
The methodology used in this work acts as a benchmark for future first-principles work that involves

nts as
calculating elastic consta

. Introduction

The antifluorite structured Mg2X compounds, where X = Si, Ge,
n, and Pb, have always been of keen interest in several areas
f research. Some recent investigations include [1–6]. Except for
g2Pb, which is more prominent as a semi-metal [7,8], the other

ompounds mentioned above are semi-conductors [1,9,10]. Owing
o their intriguing properties like exceptionally good thermo-
lectric characteristics [2,5,6,11], low density, low coefficient of
hermal expansion, high hardness and high elastic modulus, the
ange of applications where Mg2X compounds can be employed
s constantly increasing [12–14]. Recently, Mg2X compounds have
lso been shown to be better replacers for Mg-RE (rare earth) com-
ounds because of their above mentioned properties and the fact
hat they are relatively cheaper [12].

Although a reasonable amount of information about the room
emperature behaviors of these compounds does exist [8,12,15],

here is a dearth of data in terms of the temperature dependency
f their properties. To be able to use these compounds for applica-
ions at elevated temperatures, knowledge of their basic properties
t the corresponding temperatures is imperative. Elastic constants

∗ Corresponding author at: Department of Materials Science and Engineering, 304
teidle Building, University Park, PA 16802, United States.

E-mail address: sxg319@psu.edu (S. Ganeshan).
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a function of temperature.
© 2010 Elsevier B.V. All rights reserved.

are one such material property that builds a foundation for a better
understanding of various other properties, be it mechanical, phys-
ical or even electronic [16–19]. Lately, elastic constants have been
correlated to properties like hardness [19,20], fracture toughness
[21], stiffness, ductility and bond characteristics [22–24]. Elastic
constants are also vital in considering defects in solids [25] such as
vacancies [26], interstitials, substitutional impurities, dislocations,
twin boundaries [27] and grain boundary energies [28].

While experimental determination of elastic constants of com-
pounds at temperatures above room temperature has always been
challenging, no theoretical calculations have either been reported
in the literature for these compounds. We have recently started
research activities in this area [29–31]. In the current work, we
present elastic stiffness coefficients, cij, bulk modulus, B, shear mod-
ulus, G, Young’s modulus, E, Poisson’s ratio, �, and anisotropic ratio,
A of the II–IV group compounds (Mg2Si, Mg2Ge, Mg2Sn and Mg2Pb),
from first-principles calculations. It aims to provide not only useful
data for these compounds but also a benchmark methodology for
obtaining elastic stiffness coefficients as a function of temperature
in general.

2. Methodology
In the present work, first-principles calculations based on density func-
tional theory [32] is performed. The generalized gradient approximation (GGA) of
Perdew–Burke–Ernzerhof (PBE) [33] as implemented in the Vienna Ab-initio Sim-
ulation Package (VASP) [34,35] has been employed. The ion–electron interaction
is described using the projector augmented wave method (PAW) [36]. A primitive

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:sxg319@psu.edu
dx.doi.org/10.1016/j.jallcom.2010.03.153
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Incorporating the correction terms resulted in an increase in the elastic stiffness
coefficients by a maximum of ∼5.7 GPa for Mg2Si and ∼5.85 GPa for Mg2Ge, ∼3.8 GPa
for Mg2Sn and ∼3 GPa for Mg2Pb at their respective melting temperatures. It is
understood from the results in the present work that the correction term becomes
more significant at higher temperatures (see Fig. 1). The isentropic correction term

Table 1
Polynomial fitting parameters that have been used in this work to calculate cij as a
function of temperature (T); (a + bT + cT2).

Compound cij (GPa) a (GPa) b (GPa/K) c (GPa/K2)

Mg2Pb
c11 54.494 −0.0072 −5 × 10−6

c12 22.570 −0.0025 −2 × 10−6

c44 23.961 −0.0033 −2 × 10−6

Mg2Sn
c11 70.583 −0.0063 −3 × 10−6

c12 25.355 −0.0024 −2 × 10−6

c44 30.317 −0.0030 −1 × 10−6

c11 117.48 −0.0076 −3 × 10−6
92 S. Ganeshan et al. / Journal of Allo

nit cell containing 1 formula unit has been used for calculation of total energy
s well as elastic stiffness coefficients. Since all the four compounds in the current
tudy possess an FCC-antifluorite structure, a Monkhorst-Pack [37] k-point set of
5 × 15 × 15 with an energy cut-off of 350 eV is used after having tested for con-
ergence. The atomic arrangements are relaxed using the Methfessel–Paxton [38]
echnique for the reciprocal-space integration, following which accurate stresses
f the relaxed structures are obtained using the tetrahedron method with Blöchl
orrections [39].

.1. Elastic coefficients

Herein, elastic stiffness coefficients for each of the (Mg2X) compounds are cal-
ulated at 8 different volumes that have been generated around the equilibrium
olume, such that the maximum total strain is related to the lattice constant near the
elting point of each of the structures. The effective stress–strain method [22,40,41]

as been used to calculate the elastic stiffness coefficients at each volume. As per
his method, a set of strains, ε = (ε1, ε2, ε3, ε4, ε5, ε6), where ε1, ε2, ε3 refer to normal
trains and ε4, ε5, ε6 to shear strains, is imposed on the fully relaxed crystal struc-
ure of the compound. Let (Q) and (Q̄ ) represent the crystal lattice vectors before
nd after the application of strains such that,

Q̄ = Q

(
1 + ε1 ε6 /2 ε5/2
ε6/2 1 + ε2 ε4/2
ε5/2 ε4/2 1 + ε3

)
(1)

hereafter for each of the strains applied corresponding stresses, � = (�1, �2, �3, �4,
5, �6), are obtained from first-principles total energy calculations. From the n set of
trains (ε) and the resulting stresses (�), elastic stiffness coefficients (cij ’s) are then
alculated based on Hooke’s law, as shown below:

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c33 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

ε1,1 . . . ε1,n

ε2,1 . . . ε2,n

ε3,1 . . . ε3,n

ε4,1 . . . ε4,n

ε5,1 . . . ε5,n

ε6,1 . . . ε6,n

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

�1,1 . . . �1,n

�2,1 . . . �2,n

�3,1 . . . �3,n

�4,1 . . . �4,n

�5,1 . . . �5,n

�6,1 . . . �6,n

⎞
⎟⎟⎠

(2)

n the present study six linearly independent set of strains are applied such that

ε1,1 . . . ε1,6

ε2,1 . . . ε2,6

ε3,1 . . . ε3,6

ε4,1 . . . ε4,6

ε5,1 . . . ε5,6

ε6,1 . . . ε6,6

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x 0 0 0 0 0
0 x 0 0 0 0
0 0 x 0 0 0
0 0 0 x 0 0
0 0 0 0 x 0
0 0 0 0 0 x

⎞
⎟⎟⎠

ith x = ± 0.01 Å.
For the FCC-antifluorite structure studied in the present work, the number of

ndependent components of elastic stiffness tensor decreases to 3, i.e., c11, c12, and
44.

Eq. (2) can thereby be written in a simplified form as follows:

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

ε1,1 . . . ε1,6

ε2,1 . . . ε2,6

ε3,1 . . . ε3,6

ε4,1 . . . ε4,6

ε5,1 . . . ε5,6

ε6,1 . . . ε6,6

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

�1,1 . . . �1,6

�2,1 . . . �2,6

�3,1 . . . �3,6

�4,1 . . . �4,6

�5,1 . . . �5,6

�6,1 . . . �6,6

⎞
⎟⎟⎠

(3)

he bulk (B), shear (G), and Young’s (E) moduli and Poisson’s ratio (�) for the cubic
ompounds in the current work are computed using Hill’s [42] approximation as
hown below:

H = BV = BR = c11 + 2c12

3
(4)

H = GV + GR

2
, where GV = c11 − c12 + 3c44

5
and GR = 5(c11 − c12)c44

4c44 + 3(c11 − c12)
(5)

H = 9BHGH

3BH + GH
(6)

= 3BH − 2GH

2(3BH + GH)
(7)

here subscripts V and R refer to Voigt [43] and Reuss [44] approximations.
.2. Phonon dispersion curves and phonon density of states

Phonon calculations are carried out using the supercell method as implemented
n the ATAT code [45]. The supercell method involves calculating the forces that
esult from perturbing atoms from their equilibrium positions. Phonon calculations
ia the supercell method begin with generating supercells from the fully relaxed
Compounds 498 (2010) 191–198

primitive cells for each of the systems under study. The present study consists
of quasiharmonic calculations with 8 different volumes. For each of the volumes,
different supercells are generated with perturbations corresponding to the atomic
positions and their energies and inter-atomic forces are calculated with no relax-
ation of their degrees of freedom [46–48]. Displacements of 0.15 Å are applied to the
ions. Supercells consisting of 81 atoms for Mg2Si and Mg2Ge and 96 atoms for Mg2Sn
and Mg2Pb are created. The size of the supercell has been chosen such that the force
constant decreases to a negligibly small value from the equilibrium position of the
perturbed atom to the boundary of the supercell. A Monkhorst-Pack [37] k-point
mesh of 4 × 4 × 4 is applied along with a cut-off energy of 350 eV. Force constants
are obtained using the fitfc code within the ATAT package [45]. Herein a cut-off range
of 6 Å is used. Finally phonon frequencies are calculated within the assigned range
of force constants.

By using the resultant phonon density of states (DOS), the vibrational free energy
(Fvib) of the system in units of eV/atom is obtained using the following equation [49]:

Fvib(T) = kBT

∞∫
0

dv ln

[
2 sin h

(
hv

2kBT

)]
· g(v) (8)

where � is the phonon frequency and g(�) corresponds to the phonon DOS. From
this vibrational free energy, bulk modulus as a function of temperature (B(T)) and
thereby temperature dependent heat capacity, Cp(T), are obtained as shown in Eqs.
(9) and (10):

B(T) = VT

(
∂2Fvib

∂V2

)
T

(9)

Cp(T) = CV (T) + ˇ2BT TVT (10)

where Cv and CP are heat capacity at constant volume and constant pressure, respec-
tively, estimated by CV = T(∂s/∂T)V . BT , T, and VT are the bulk modulus, temperature
and volume. ˇ is the volume thermal expansion coefficient which is 3 times the
linear coefficient of expansion given by ˛T = (1/3v0T)(∂v0T/∂T)P , where V0T is the
equilibrium volume at the temperature of interest.

2.3. Transitive correlation method for temperature dependent cij ’s

The methodology incorporated in this study to calculate elastic stiffness coef-
ficients as a function of temperature is as follows [29,30]. First, elastic stiffness
coefficients at different volumes, cij(V), are calculated at 0 K from first-principles
based on the effective stress–strain method [40,41] along with phonon calcula-
tions at different volumes. From these quasiharmonic phonon calculations we obtain
vibrational free energy, specific heat, bulk modulus, and volume under the pressure
of interest (external pressure of 0 kB has been used in the present work). At this point,
it is assumed that the volumes for which elastic stiffness coefficients have been cal-
culated at 0 K correspond to the volumes as a function of temperature obtained
from the first-principles quasiharmonic calculations. Hence, under the framework
of quasiharmonic approach, we obtain temperature dependent, cij(T), based on the
predicted cij(V) and V(T) mentioned above. The polynomial fitting parameters used
in obtaining cij(T) is shown in Table 1.

Since calculated elastic stiffness coefficients obtained herein are under isother-
mal conditions and the experimental measurements are isentropic, a correction
term (see Eq. (11)) has been added to our results as per [29,30,50] for c and c .
Mg2Ge c12 24.223 −0.0028 −1 × 10−6

c44 46.018 −0.0044 −2 × 10−6

Mg2Si
c11 115.13 −0.0072 −3 × 10−6

c12 22.112 −0.0024 −1 × 10−6

c44 44.707 −0.0043 −2 × 10−6
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or c11 and c12 is given by [30]:

= T ∗ VT ∗ (ˇT ∗ BT )2

Cv
(11)

here T is temperature, VT , ˛T , BT and Cv correspond to volume, coefficient of thermal
xpansion, bulk modulus, and heat capacity obtained from phonon calculations.
igs. 2, 4 and 5 show volume, coefficient of thermal expansion, heat capacity and
ulk modulus for each of the compounds, obtained from phonon calculations, as a
unction of temperature.

. Results and discussion

This section is divided into three parts. In Section 3.1, we provide
omparative results between calculated data for phonon dispersion
urves and heat capacities from the current work and available
xperimental data in the literature to verify the quality of our
honon calculations. In Section 3.2, a proof that the transitive corre-

ation methodology mentioned in Section 2.3 works well is shown
y comparing bulk modulus with data from direct phonon calcula-
ions. Finally in Section 3.3, we present results for elastic stiffness
oefficients with respect to temperature as calculated in the current
ork along with a detailed analysis of the results and a comparison
ith available experimental data in the literature.

.1. Validity of phonon calculations
Experimental measurements for phonon dispersion curves are
vailable for Mg2Pb [51] and Mg2Sn [52]. Measurements for both
ompounds were carried out using neutron inelastic scattering. The
honon dispersion curves for the four compounds are shown in

Fig. 2. Calculated (a) volume and (b) coefficient of th
Compounds 498 (2010) 191–198 193

Fig. 3. As seen in Fig. 3 the present calculations agree well with
the available measurements, especially for the acoustic branches.
These results indicate that our phonon calculations are of high qual-
ity.

Fig. 4 shows calculated heat capacity, CP, data along with avail-
able experimental data [13,53–55] for the compounds studied
herein. Calculated data is plotted from 0 K to the approximate melt-
ing point of the compounds [56]. Experimental measurements for
heat capacity data were available from 15 to 300 K for Mg2Si [54]
and from 5 to 300 K for the other three compounds [13,53,55]. Mea-
surements for these compounds were made by the same group. The
authors indicate a considerable amount of scatter at low temper-
atures especially below 15 K. As apparent from Fig. 4, there is an
excellent agreement between our calculated results and measured
data.

3.2. Applying the transitive correlation to bulk modulus

In order to ensure that the correlation made in this study, i.e.,

cij(V)
V(T)⇔ Cij(T) is reasonable, we present firstly results for bulk mod-

ulus of these compounds. The reason for choosing bulk modulus
is because temperature dependent bulk modulus can be obtained
directly from both quasiharmonic phonon calculations and cij(T).
Fig. 5 shows isothermal B vs. T curves from both approaches. Since
the bulk modulus obtained from quasiharmonic phonon calcula-
tions is not isentropic, we have not applied correction terms for
the bulk modulus obtained from cij(T) in this present comparison.
In general, from Fig. 5 it is clear that a good agreement lies between
the results obtained from quasiharmonic approach as well as from
the transitive correlation approach. Specifically for Mg2Pb and
Mg2Si the comparisons appear very promising. While for Mg2Ge
and Mg2Sn, an overestimation of ∼2 GPa arises above room tem-
perature, the difference between the curves, with respect to the
quasiharmonic approach lies within 4% for all the compounds. Thus,
it can be concluded that the data obtained for bulk modulus from
the transitive correlation is worthy for further consideration. With
this in mind, we present in Section 3.3, results obtained for elastic
stiffness coefficients as a function of temperature.

3.3. Elastic stiffness coefficients cij’s

The elastic stiffness coefficients and the corresponding bulk
modulus, shear modulus, Young’s modulus, Poisson’s ratio, and
anisotropy ratio of Mg2Si, Mg2Ge, Mg2Sn, and Mg2Pb have been cal-

culated herein as per the procedure mentioned in Section 2.3. Fig. 6
shows calculated elastic stiffness coefficients as a function of tem-
perature for all the four compounds considered herein along with
the available experimental data. Experimental elastic constants
were available for Mg2Si measured by longitudinal and transverse

ermal expansion as a function of temperature.
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Fig. 3. Calculated phonon dispersion curves along with experimental

Fig. 4. Calculated and experimental [13,53–55] heat capacity of the Mg2X com-
pounds studied herein.

Fig. 5. A comparison between isothermal bulk modulus obtained directly from
quasiharmonic approach through phonon calculations and from isothermal cij(T)
(i.e., without the addition of correction terms).
data: (a) Mg2Ge, (b) Mg2Si, (c) Mg2Pb [51] and (d) Mg2Sn [52].

sound velocities from 80 to 300 K [57]. For Mg2Ge [58] and Mg2Sn
[59] elastic constants were extrapolated by least square method
from sound velocities measured by resonance technique from 80 to
300 K. In the case of Mg2Pb [51] measurements for elastic constants
were available only at room temperature. There is a very good
agreement between calculated and experimental data for Mg2Si
and Mg2Ge as seen in Fig. 6. However, due to the high level of uncer-
tainty in the experimental data in the case of Mg2Sn and the lack
of measurements for Mg2Pb, a reasonable comparison could not be
made for these two compounds.

From the calculated results for the elastic stiffness coefficients,
the influence of temperature on each of the cij’s can be observed.
Of all the cij’s (i.e., c11, c12 and c44), c12 shows the maximum change
up to the melting point for Mg2Si, Mg2Ge and Mg2Sn. For instance,
c11 and c44 of Mg2Si decreases by ∼15% and ∼23%, whereas c12
decreases by ∼ 33% from 0 K to the melting point. Similarly, for
Mg2Ge, c11 and c44 decrease only by ∼16% and ∼24%, but c12
decreases by almost 34%. Even in the case of Mg2Sn the maxi-
mum influence of temperature is seen for c12. In the case of Mg2Pb,
however, all the three elastic stiffness coefficients decrease uni-
formly by ∼18%. The percentage decreases mentioned here have
been rounded off to the nearest whole number. From Fig. 6, it can
also be noted that the maximum elastic stiffness coefficients near
the melting point pertains to c11 of Mg2Ge (∼101 GPa), and the
minimum pertains to c12 of Mg2Si (∼16.4 GPa). It should be empha-
sized here that values for elastic stiffness coefficients for Mg2Si and
Mg2Ge are very close to each other due to a high similarity in their
structures.

On comparing the elastic stiffness coefficients for the four com-
pounds, it is seen as in Fig. 7 that c11 and c44 show a similar trend,
while c12 shows a different trend. In the case of c11 and c44, the
trend followed is Mg2Ge > Mg2Si > Mg2Sn > Mg2Pb, with Mg2Si and
Mg2Ge being very close to each other in their elastic stiffness coef-

ficients, whereas for c12 the trend seen is different. In the case of
c12 Mg2Sn has the highest value followed by Mg2Ge, Mg2Pb and
Mg2Si at their corresponding melting temperatures. However the
trend seen in B, E, and G of these compounds is similar to those of
c11 and c44. The reason behind this difference in the trend of c12
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Fig. 6. Calculated isentropic cij as a function of temperature along with available experimental data [51,57–59] (* and ** refer to isothermal c11 and c12, i.e., without the
addition of correction term �).

Fig. 7. Trends seen in the cij of each of the compounds as a function of temperature.
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Fig. 9. Relative shear modulus as a function of temperature for the compounds
considered in this work.

3

ig. 8. Elastic anisotropy as a function of temperature for the compounds studied
erein.

ould be attributed to its lack of phonon physicality as mentioned
y Ledbetter [60].

Based on the results obtained for the elastic stiffness coefficients
he anisotropic ratio as a function of temperature for all the four
ompounds can be calculated using the following equation [16]:

= 2c44

c11 − c12
(12)

It is known that elastic anisotropy correlates to dielectric break-
own and resistance to micro-crack of a given material [61,62]. A

arge anisotropy tends to enhance cross-slip [63]. In Eq. (12), if A = 1
he material is considered to be completely isotropic, while the fur-
her the value of A from 1, the more anisotropic it is [16]. It has also
een proposed that large values of A can give rise to the driving
orce (tangential force) acting on screw dislocations to promote
ross-slip pinning process [64]. From Fig. 8 it is seen that none of
he compounds considered in this study are completely elastically
sotropic. All of them possess an anisotropy ratio either greater or
ess than 1. However, Mg2Si and Mg2Ge begin with values of A being
ery close to 1 at 0 K when compared to those of Mg2Pb and Mg2Sn.
hile the rate of change in the anisotropic ratio is moderate for all

he compounds, Mg2Pb shows the least amount of change in its
nisotropic ratio. The value of A for Mg2Pb begins with 1.50 at 0 K
nd ends at 1.51 near its melting point. Mg2Si and Mg2Ge com-
ared to the other two compounds show greater changes in their
nisotropic ratios. The value of A for Mg2Si begins at 0.96 and ends
t 0.86 showing an approximate decrease of 10% in its value. In the
ase of Mg2Ge, the change in the anisotropic ratio is about 11%.
oth Mg2Ge and Mg2Si become more elastically anisotropic with

ncreasing temperature whereas Mg2Sn becomes less anisotropic.
ased on [61,62], it can be concluded that with the increase in tem-
erature Mg2Si and Mg2Ge become less resistant to micro-cracks
nd the possibility of dielectric break down increases, while Mg2Sn
ains more resistance to the same. On an average, however, the
nisotropic ratio for Mg2Si and Mg2Ge is still closer to 1 than the
nisotropic ratio of Mg2Sn. In the case of Mg2Pb, the influence of
emperature appears negligible on its anisotropy thereby causing
ts resistance to micro-cracks and dielectric breakdown to remain
lmost uniform.

Another important elastic property is the shear modulus that
orrelates to a material’s resistance to shear and plastic deforma-
ion [27]. The shear moduli for the {1 0 0} plane along the [0 1 0]

¯
irection and for the {1 1 0} plane along the [1 1 0] direction are
44 and (c11–c12)/2, represented by G{1 0 0} and G{1 1 0} [65]. Fig. 9
hows the difference in the corresponding single crystal shear mod-
li (i.e., G{1 1 0}–G{1 0 0}) for the compounds considered in this study.

t is seen that for Mg2Sn and Mg2Pb, G{1 0 0} is always greater than
Fig. 10. Fracture strength of the compounds depicted by product of bulk modulus
and volume as a function of temperature.

G{1 1 0} at any temperature. This means that these compounds have
a greater resistance to shear along the {1 0 0} plane than along the
{1 1 0} plane [65]. For Mg2Si and Mg2Ge, as seen in Fig. 9, G{1 1 0} is
always higher than G{1 0 0} indicating that it is easier to shear the
materials along the {1 0 0} plane than the {1 1 0} plane [65].

On the relations between elastic moduli and plastic proper-
ties Pugh [18] suggested that the fracture stress (�) of a material
can be approximately correlated to B × a, where B is the bulk
modulus and a the lattice constant. Extending this relation to
BV1/3, with V being the volume of the unit cell as for a cubic
system a3 = V, we have attempted to study the fracture tough-
ness behavior of these materials as a function of temperature.
Though this is not an accurate comparison, a basic understand-
ing of the strength of these materials can be obtained. Fig. 10
shows the value of B × V1/3 as a function of temperature for the
compounds in this study. All the four compounds show a gen-
eral decrease in their B × V1/3 value. It can be then concluded that
the degree to which the bulk modulus of the compounds decrease
with temperature is greater than the degree to which there is a
volume increase as a function of temperature. Among the four
compounds, Mg2Ge has the highest value of ∼185.6 GPa/Å, and

Mg2Pb has the lowest value of ∼124.9 GPa/Å at their respec-
tive melting temperatures. From the curves shown in Fig. 10,
based on Pugh’s [18] relation that �∝B × V1/3, we can approxi-
mate that the least fracture strength as a function of temperature
is shown by Mg2Pb. Mg2Sn has a higher fracture strength com-
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Fig. 11. Young’s modulus (E) as a function of temperature.

ared to Mg2Pb but has its B × V1/3 value lower than Mg2Si and
g2Ge.
The stiffnesses of these compounds can be estimated based on

heir Young’s modulus (E). The larger the value of E, the stiffer the
aterial [65]. Change in E as a function of temperature for each

f the compounds considered in this work is shown in Fig. 11. In
greement with the general trend, the Young’s modulus decreases
ith temperature, indicating that the compounds become less stiff

s the temperature increases. The maximum E at the melting tem-
erature pertains to that of Mg2Ge (∼99.0 GPa), followed by Mg2Si
∼97.4 GPa), Mg2Sn (∼62.3 GPa) and finally Mg2Pb (∼46.7 GPa).

Apart from the above mentioned correlations, there are several
ther properties like machinability, ductility [66], bond characteris-
ics, load deflection, etc. that can be understood for these materials
ased on their elastic stiffness coefficients. Some of these properties
or the Mg2X compounds have been studied at 0 K in our previous
ork [22].

. Summary

First-principles calculations of elastic constants as a function
f temperature have been performed for Mg2X (X = Si, Ge, Sn,
b) compounds. A good agreement between calculated and avail-
ble experimental data in the literature is shown. The accuracy
f the current first-principles calculations has been validated by
omparing with experimental phonon dispersions and heat capac-
ties as a function of temperature for all the compounds. The
ransitive correlation methodology employed here in calculat-
ng elastic stiffness coefficients as a function of temperature has
een corroborated by presenting similar values for bulk modulus
s obtained from the quasiphonon calculations. The elastic stiff-
ess coefficients of the compounds decrease in the sequence of
g2Ge > Mg2Si > Mg2Sn > Mg2Pb for c11 and c44, but in the sequence

f Mg2Sn > Mg2Ge > Mg2Pb > Mg2Si, at their corresponding melt-
ng points, for c12. All the compounds exhibit elastic anisotropy
s a function of temperature. The value of the anisotropic ratio
oves further away from 1 for Mg2Si and Mg2Ge; approaches
in the case of Mg2Sn and remains almost constant for Mg2Pb.
g2Sn and Mg2Pb show greater resistance to shear along the

1 0 0} plane while Mg2Si and Mg2Ge show greater resistance

o shear along the {1 1 0} plane. The fracture strength and stiff-
ess of the compounds decrease with increase in temperature.
he data obtained in this work not only provides the funda-
ental understanding of the elastic behavior of the antifluorite
aterials considered herein, but also acts as a benchmark to use

[
[

[
[
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first-principles in obtaining elastic coefficients as a function of tem-
perature.
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